Preliminary Communication

Organometallic alkenes: the first stable silene in the neopentyl series

G. Delpon-Lacaze and C. Couret

Laboratoire de Chimie des Organominéraux, URA 477, 118 route de Narbonne, 31062 Toulouse cedex (France)

(Received April 25, 1994)

Abstract

The simple synthesis in nearly quantitative yield of dimesitylneopentylsilene 3, the first stable silene in the neopentyl series, was performed using *t*-butyllithium and dimesitylvinylfluorosilane. 3 was isolated by crystallization from pentane and characterized by ¹³C (doubly bonded carbon at +110.4 ppm) and ²⁹Si (+77.6 ppm) NMR spectroscopy and analysis.

Key words: Silicon; Silene; Preparation

Of all the routes to silenes, the addition-elimination reaction between an organolithium compound and a vinylhalogenosilane is certainly one of the most suitable.

Since the first reaction described by Jones and Lim in 1977, with dimethylvinylchlorosilane and t-butyllithium, affording the unstable dimethylneopentylsilene Me₂Si=CH-CH₂-^tBu [1], many transient neopentylsilenes RR'Si=CH-CH2-tBu have been synthesized by Jones and Lee (R = Me, R' = Ph [2]), Auner and coworkers (R = R' = Cl [3]; RR' = (CH₂)₃ [4]; R = R' $=^{t}BuO$ [5]; R = Cl, R' = CH=CH₂ [6], R = R' = ^tBu [7]; R = Me, $R' = Cp(CO)_2Fe$ [8]; R = R' = Ph [9]; RR'= $Me_3Si-N-CH_2-CH_2-N-SiMe_3$ [10]), Yoo et al. (R = Cl, R' = Ph [11]) and by our group (R = Me, R' = Mes [12]). Nevertheless, in spite of the use of uncreasingly bulkier substituents no stable neopentylsilene has yet been obtained. In contrast germanium chemistry we have recently stabilized such a structure by the introduction of two mesityl groups on the germanium atom [13].

We describe here the synthesis and the characterization of the silene analogue $Mes_2Si=CH-CH_2-{}^tBu$, the first stable silene in the neopentyl series.

The precursor of the dimesitylneopentylsilene 3 was dimesitylvinylfluorosilane 1, prepared from trichlorosilane via the dimesitylfluorosilane 2 by the following procedure

Cl₃SiH + 2MesMgBr
$$\xrightarrow{\text{THF}}$$
 Mes₂Si(H)Cl $\xrightarrow{\text{H}_2\text{O/HF}}$
Mes₂Si(H)F
2
2 + HC≡CH $\xrightarrow{\text{H}_2\text{PtCl}_6}$ Mes₂Si(F)CH=CH₂ 1

The addition of an equimolar amount of t-butyllithium (1.5 M in pentane) to 1 was performed at -78° C in pentane solution. The mixture was allowed to warm and after few minutes at room temperature lithium fluoride precipitated rapidly leading to 3 in nearly quantitative yield.

$$1 + \text{Li}^{t}\text{Bu} \rightarrow \text{Mes}_{2}\text{Si}(F)\text{CH}(\text{Li})\text{CH}_{2}^{t}\text{Bu} \xrightarrow{-\text{Li}F}$$

$$Mes_2Si=CHCH_2^tBu$$

After removing the solvent in vacuo from the orange solution, yellow crystals of 3 were obtained by crystallization from pentane at -20° C (m.p.: 152°C, yield -90%).

¹H NMR ($C_6D_6 + C_5$, 200.1 MHz): δ 'Bu (not observed), 2.69 (d, 2H, ${}^3J_{H-H} = 9.8$ Hz, CH₂), 2.74 (s, 3H, *p*-Me, Mes), 2.84 (s, 3H, *p*-Me, Mes'), 3.01 (s, 12H, *o*-Me, Mes, Mes'), 5.53 (t, ${}^3J_{H-H} = 9.8$ Hz, =CH), 7.25 (s, 2H, *m*-H, Mes), 7.31 (s, 2H, *m*-H, Mes').

¹³C NMR (CDCl₃ + C₅, 50.3 MHz): δ 21.08 (*p*-Me, Mes), 22.13 (*p*-Me, Mes'), 23.98 (*o*-Me, Mes), 25.02 (*o*-Me, Mes'), 29.03 (Me, ^tBu), 32.15 (C, ^tBu), 44.53 (CH₂), 110.44 (=CH), 129.48 (*m*-C, Mes), 129.65 (*m*-C, Mes'), 136.60 (*ipso*-C, Mes), 136.90 (*ipso*-C, Mes'), 139.51 (*p*-C, Mes), 139.79 (*p*-C, Mes'), 144.28 (*o*-C, Mes), 144.34 (*o*-C, Mes').

²⁹Si NMR (CDCl₃ + C₅, 39.8 MHz): δ + 77.6 ppm. Mass spectrometry (EI, 70 eV): 350 (M⁺, 17); 293 (M^{-t}Bu, 1); 266 (Mes₂Si, 18); 230 (M = MesH = Me, 5); 173 (MesSiCHCH₂-H, 51); 160 (MesSiCH, 100); 146 (MesSi-H, 44); 119 (Mes, 12); 57 (^tBu, 6).

Anal calc. for $C_{24}H_{34}Si$: C, 82.21; H, 9.77; Si, 8.09. Found: C, 82.47; H, 9.88%.

Correspondence to: Prof. C. Couret.

Although it is very stable, 3 has a high reactivity of which study is now in progress, mainly for comparison with dimesitylneopentylgermene. The use of this silene in organometallic and organic synthesis is also being investigated.

References

- 1 P.R. Jones and T.F.O. Lim, J. Am. Chem. Soc., 99 (1977) 2013.
- 2 P.R. Jones and M.E. Lee, J. Organomet. Chem., 232 (1982) 33.
- 3 N. Auner, J. Organomet. Chem., 353 (1988) 275.
- N. Auner and C. Seidenschwarz, Z. Naturforsch., 45b (1990) 785. 4 N. Auner, J. Organomet. Chem., 336 (1987) 83.

- 5 J. Grobe, H. Schröder and N. Auner, Z. Naturforsch., 45b (1990) 909.
- 6 N. Auner, J. Organomet. Chem., 377 (1989) 175.
- 7 N. Auner, Z. anorg. allg. Chem., 558 (1988) 87.
- 8 N. Auner, J. Grobe, T. Schäfer, B. Krebs and M. Dartmann, J. Organomet. Chem., 363 (1989) 7.
- 9 N. Auner, W. Ziche and E. Herdtweck, J. Organomet. Chem., 426 (1992) 1.
- 10 N. Auner and E. Penzenstadler, Z. Naturforsch., 47b (1992) 795.
- 11 B.R. Yoo, I.N. Jung, M.E. Lee and C.H. Kim, Bull. Korean Chem. Soc., 12 (1991) 517.
- 12 G. Delpon-Lacaze, C. Couret and J. Satgé, unpublished results.
- 13 C. Couret, J. Escudié, G. Delpon-Lacaze and J. Satgé, Organometallics, 11 (1992) 3176.